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Finite-momentum condensation in a pumped microcavity
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We calculate the absorption spectra of a semiconductor microcavity into which a nonequilibrium exciton
population has been pumped. We predict strong peaks in the spectrum corresponding to collective modes
analogous to the Cooper modes in superconductors and fermionic atomic gases. These modes can become
unstable, leading to the formation of off-equilibrium quantum condensates. We calculate a phase diagram for
condensation and show that the dominant instabilities can be at a finite momentum. Thus we predict the
formation of inhomogeneous condensates, similar to Fulde-Ferrel-Larkin-Ovchinnikov states.
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I. INTRODUCTION

The appearance of order at an equilibrium phase transition
is a central concept in many areas of physics, from con-
densed matter to the physics of the early universe. Recently
there has been considerable interest in the more general
problem of ordering far from thermal equilibrium, motivated
by the possibility of quantum quench experiments in cold
atomic gases.' In a quench the parameters of the system are
rapidly switched from a disordered to an ordered phase and
the disordered state forms the initial conditions for a dynam-
ics with the new parameters. An interesting regime is that of
coherent relaxationless dynamics, which can lead to the for-
mation of nonequilibrium order including crystallization,?
condensation, and ferromagnetism.?

Among condensed matter systems, semiconductor micro-
cavities are promising candidates for studying such quench
dynamics. The nonequilibrium dynamics of microcavities
has attracted considerable interest both experimentally*~ and
theoretically'®'* with recent experiments demonstrating re-
gimes where the low-energy quasiparticles, polaritons, form
a condensate. More recently, an experiment has been pro-
posed to implement a quantum quench,' by rapidly prepar-
ing a microcavity in a noncondensed initial state. The coher-
ent dynamics of this noncondensed state is predicted to lead
to a form of nonequilibrium condensation, similar to that
predicted in a quenched Fermi gas.'®!® We show here that,
as in the Fermi gas, such condensation is due to the appear-
ance of a new collective mode. Moreover, we show that in
the microcavity the dominant instability occurs at a finite
wave vector. Thus we predict that microcavities could be
used to realize inhomogeneous condensates,'® i.e., those
characterized by a spatially varying phase. These conden-
sates are similar, in this essential respect, to those predicted
by Fulde, Ferrel, Larkin, and Ovchinnikov (FFLO) in unbal-
anced Fermi systems.'®

In this paper, we first calculate the optical spectra of a
microcavity a short time after it has been prepared in a non-
condensed state, i.e., immediately after the “quench.” We
find that the collective mode responsible for condensation is
directly observable in these spectra. We use this analysis to
calculate a phase diagram for the nonequilibrium condensa-
tion and show that the condensation generally occurs at a
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finite momentum. While we focus on a microcavity contain-
ing quantum dots, our analysis is based on the Maxwell-
Bloch equations. These describe a wide variety of coupled
light-matter systems, implying a broad relevance of our
work.

The remainder of this paper is structured as follows. In
Sec. II we briefly review the proposed quench experiment
and outline our model. In Sec. III we present absorption
spectra of the system. In Sec. IV we discuss the phase dia-
gram and the possibility of finite momentum condensation,
and in Sec. V we discuss the connections to FFLO and
the role of nonlinear terms. Section VI summarizes our con-
clusions. Finally, the appendix contains a brief treatment of
the preparation of noncondensed initial states by optical

pumping.

II. MODEL

We consider an experiment, proposed in Ref. 15, on a set
of localized exciton states in a planar semiconductor micro-
cavity. Such excitonic states could be realized in practice
using either highly disordered quantum wells (where exci-
tons are localized by disorder) or quantum dots. The pro-
posed experiment involves two stages which are separated in
time and can be regarded as independent. In the first stage,
the localized states are driven by a chirped laser pulse. This
pulse creates an energy-dependent population in the inhomo-
geneously broadened exciton line by adiabatic rapid passage
(ARP). For certain populations a second stage may then oc-
cur, where the population evolves into a nonequilibrium con-
densate due to the photon-mediated interactions between the
excitons.

As in Ref. 15 we describe the system using a generaliza-
tion of the Dicke model.? The localized exciton states are
treated as two-level systems with the standard dipole cou-
pling to the electromagnetic field. The state localized at site i
is specified by the Bloch vector o;=(d;), where the inversion
o7=1(=1) for an occupied (unoccupied) state, and J; is the
exciton annihilation operator. Angle brackets { ) denote ex-
pectation values in the quantum state of the system.

We consider time scales short compared with the exciton
lifetime, which is at least 100 ps,21 and treat the electromag-
netic field using a mean-field approximation. In this approxi-
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mation the photon creation and annihilation operators are
replaced with their expectation values and hence become ¢
numbers. The resulting equations of motion are linear in the
remaining operators so that we may take their expectation
values without further approximation. The resulting dynam-
ics obeys the generalized Maxwell-Bloch equations

i¢k=wk¢k+gf PdE + fy+ Fo_p, (1)
iP,=EP,~ g2, Dy, (2)

kl
ka: ZgE (P:;’—k k' —Pkr_,.kl/l;:/). (3)

K’

Here 4 is the complex amplitude of the microcavity mode
with in-plane wave vector k and energy wy (A=1). It is re-
lated to the expectation value of the photon annihilation op-

erator by 4. =(th)/ VN, where N is the total number of local-
ized states. This normalization is convenient when dealing
with condensation since macroscopic occupation corre-
sponds to a finite ¢4 in the thermodynamic limit N — . We
allow for the finite lifetime of the photon modes by taking
Jwy=-7. fi is introduced to allow us to calculate the linear
response. F is an externally applied pump field, with wave
vector p, that is used to create the nonequilibrium popula-
tion. _

The coupling g=g;\n in Eqs. (1)—(3) is related to the di-
pole coupling strengths of the localized states, g;, and their
area density n. To simplify the notation we have taken g; to
be the same for all states; the extension to a distribution is
straightforward. In the dipole gauge

B 4)

2epew

gi=d

where d is the matrix element of the dipole operator e7 be-
tween the zero-exciton and one-exciton states, and E; their
energy difference. w is the effective width of the cavity,
which arises from the normalization of the cavity mode func-
tions.

Py(E) is the collective polarization of the ensemble at
wave vector k due to states with energy in a small interval
near £

P(E)SE = 1% > (67 )e (5)

where the prime indicates that the sum runs over states with
exciton energies between E and SE. Dy(E) is the collective
inversion, defined in a similar way with ° replacing 6.

In the following we shall be concerned with large N and
wave vectors which are small compared with the inverse
spacing of the localized states. In these limits we may ap-
proximate sums over dot positions, such as those in Eq. (5),
by
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1w, 1
Xf; e i~ Y(E) Ok.00F + O(VTT’) (6)

Here v(E) is the distribution of localized states in energy,
normalized to one. Thus Nv(E)SE is the number of terms in
the primed sum, Eq. (6). For k # 0 the phasor sum is a two-
dimensional random walk, producing the O(1/\N)
corrections.??

The approximation of Eq. (6) corresponds to replacing the
response of the disordered dielectric with its homogeneous
average response so that the wave vector is well-defined.
This is similar to the linear dispersion model which has been
extensively used for inorganic microcavities.>> The O(1/N)
corrections describe Rayleigh scattering from density fluc-
tuations in the dielectric. They are generally small correc-
tions because the scatterers are dense so that on long wave-
lengths the medium appears homogeneous. The corrections
can become important at very small or large wave
vectors,?*? for modes whose group velocity becomes very
small. In this case a long lifetime is required for the wave
vector to be well-defined so that even weak scattering or
absorption destroys the quasipropagating modes. Here, how-
ever, we are concerned with modes that have a significant
dispersion due to their photon component. Furthermore, the
lifetime of these modes is massively enhanced by resonant
gain from the populated excitons. Thus the leading approxi-
mation of Eq. (6) will capture the physics at the experimen-
tally relevant wave vectors.

III. ABSORPTION SPECTRA

In the experiment F is a chirped pulse, which creates a
nonequilibrium population of excitons using ARP. In the Ap-
pendix we demonstrate this explicitly, using a model pulse,
Eq. (A5), for which analytical solutions to the dynamics ex-
ist. Following the pulse the exciton states are populated with
a distribution given by Eq. (A6) and the fields and polariza-
tions are negligible ¢4 =0, P,~=0.

To establish the optical properties of the microcavity im-
mediately after the pump pulse we find the response to a
weak probe fy.. The susceptibility can then be found from the
induced electromagnetic field S =Zx [ xuxer (t
—t")fio(t")dt'. If the system is stable then ¢4 and Py are
small (of order fy) for all times whereas if it is unstable they
are only small soon after the pump pulse. In both regimes we
may neglect terms above first order in ¢4 and Py. Equation
(3) then gives D=0 so the nonequilibrium population is
constant. Fourier transforming the linearized Egs. (1) and (2)
gives

Dy 6ty
wd = ol - | = —dE+fi.  (7)
Kk’ @

The pumping populates the states independently of their
position, within the pump spot. Thus the sum in Dy_y is
strongly peaked near the forward scattering direction k—k’
=0, as discussed above [Eq. (6)]. Neglecting the smaller off-
diagonal scattering terms we obtain a diagonal response
function

035317-2



FINITE-MOMENTUM CONDENSATION IN A PUMPED...

1

Dy(E)
w—wk+g2J —woszdE

Xi(w) = (8)

The absorption coefficient of the microcavity follows
from the susceptibility?6-?

A(w)=-2lim Im x(w + i€), 9)

e—0

where the infinitesimal € appears due to causality and can be
physically understood as a small damping constant for the
excitons. The sign is such that A(w)>0 corresponds to ab-
sorption of energy by the system. Thus from Eq. (8) we
obtain

2
Alw)=2 7;5’ 7TD0(2‘U)
(a) -+ gzpj %EdE> +[y—g*mDy(w)T?
B H(w)
_ZG(w)2+H(w)2' (10

When the dots are unoccupied Dy(w) <0 and the empty ex-
citon states contribute to absorption. For energies where
there are occupied exciton states Dy(w) >0, describing gain
due to the population.

In general, the response, Eq. (10), peaks near the zeroes of
G(w), which are at the energies of the normal modes. These
energies differ from the energy of the cavity resonance due
to the coupling to the exciton states. For an unpopulated state
the condition G(w)=0 recovers the usual polariton energies
of the Lorentz oscillator model®® but, in general, the spec-
trum differs due to the presence of the nonequilibrium popu-
lation. The modes have a lifetime determined by the second
factor in the denominator with contributions from the cavity
losses and the resonant mixing with the band of exciton
states. As expected it is damping which controls the overall
strength of the absorption so that the damping factor H(w)
also appears in the numerator.

The only dependence of the spectra, Egs. (8) and (10), on
the wave vector is in the energy of the cavity mode, w,
=NR(wy) = wy+|Kk|?/(2m). We therefore show results as func-
tions of w,, which corresponds experimentally to both the
incident probe angle and the cavity width.

Figure 1 illustrates absorption spectra obtained from Eq.
(10) for both a pumped and unpumped exciton line. These
spectra are valid at all times if condensation does not occur
(see later) but only soon after the pump pulse if it does. We
have taken a Gaussian model for the inhomogeneously
broadened exciton line with standard deviation o, and mea-
sure energies relative to the center of the line. We choose the
duration 7 of the pump pulse as our unit of energy and have
taken g=13/7,y=1.5/7,0=15/7. These parameters, with 7
=3 ps, are reasonable for a microcavity containing strongly
disordered quantum wells.?’ As discussed in the appendix the
pump creates a population equivalent to a Fermi function
with temperature 1/(7kyz7), and Fermi energy u dictated by
the chirp and center frequency of the pulse; we choose a
pulse for which u=-12.5/7.
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FIG. 1. Absorption spectra [Eq. (10)] in arbitrary units, for the
parameters described in the text. Top panel: spectra with the exciton
population created by the pump pulse. Bottom panel: spectra of the
unpopulated microcavity. Each curve corresponds to a different
value of the cavity mode energy w,, vertically offset as indicated by
the right-hand axes. Note the peak developing in the populated
system at wpqpe=~—13/7, indicating the presence of a collective
mode. There are regions of probe gain [A(w)<<0] between -31
< WpropeT<—13, where gain from the populated excitons over-
comes the cavity losses. Dotted lines indicate spectra with unstable
normal modes. Instabilities occur when a normal mode lies in the
region of gain and in these cases the absorption spectra have nega-
tive peaks, which are hidden from view in this figure.

The lower panel of Fig. 1 shows the expected result for an
unpopulated microcavity. There is a pronounced peak in the
absorption at the cavity mode energy, which broadens as the
cavity mode is tuned through the excitons. There is some
suggestion of an anticrossing near resonance, i.e., a polariton
splitting but since the inhomogeneous broadening is rela-
tively large compared with the coupling this is a weak effect.
The top panel shows that the population dramatically
changes the absorption spectrum. For these parameters it
leads to a range of probe frequencies for which 7y
<g?’mDy(w), and the absorption coefficient, Eq. (10), be-
comes negative. This occurs when the gain from the popu-
lated exciton states exceeds the losses so that there is a net
gain for the probe beam. Moreover, we see a pronounced
additional peak in the absorption spectrum, which first ap-
pears near the upper edge of the population as the cavity
mode energy is decreased. As the cavity energy is decreased
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still further this peak moves down through the region of gain,
before the spectrum finally reverts to one dominated by the
unperturbed cavity mode.

This additional peak in the absorption spectrum is analo-
gous to the Cooper pairing mode in a superconductor or
Fermi gas, that gives rise to the Cooper instability. The anal-
ogy can be seen by noting that the normal-mode condition
G(w)=0 contained in Eq. (10) is the Cooper equation, as
discussed for this system in Ref. 15. The nonequilibrium
exciton population corresponds to the Fermi distribution
while the photon-mediated interaction between excitons cor-
responds to the pairing interaction between the electrons. As
in a superconductor the sharp step in the population leads to
collective modes generated by the pairing interaction. Figure
1 shows that, for reasonable parameters, these collective
modes give rise to strong features in the spectra.

It is interesting to compare the spectra of Fig. 1 with the
predictions for an equilibrium condensate in the same
model.”” In that case the condensation opens a gap in the
single-particle spectrum, which is the analog of the Cooper
gap of the superconductor. Inside this gap is a collective
mode, which is the analog of the Cooper mode or phase
mode of the superconductor. The features visible in Fig. 1
arise from the nonequilibrium generalization of the collective
mode (which is a different spectral feature than the gap). It is
clear from Fig. 1 that it is the collective mode which domi-
nates the spectrum. Thus, although the single-particle fea-
tures may be affected by condensation, this would have little
effect in practice. It may be possible to isolate the single
particle spectrum in a Rayleigh scattering experiment, as has
been proposed for equilibrium condensates.3°

IV. PHASE DIAGRAM

The normal modes of the system, with frequencies deter-
mined by G(w)=0, have decay rates H(w). If a normal mode
frequency lies in the H(w) <0 region produced by the non-
equilibrium population it will be unstable, growing exponen-
tially to give a state with a highly populated mode, i.e., a
condensate. The condition for the onset of such an instability
gives a nonequilibrium phase diagram, which is shown for
our chosen parameters in Figs. 2 and 3.

Figure 2 shows the phase diagram assuming that only a
single cavity mode, of energy w,, is relevant. The dotted line
shows the phase boundary for equilibrium condensation in
the same model?’ with a temperature and chemical potential
corresponding to the pumped population. We see that one
sheet of the nonequilibrium phase boundary extends the
equilibrium result to allow for the cavity damping. Whereas
in equilibrium the presence of the collective mode is suffi-
cient to create an instability, in the open system condensation
only occurs if the gain at the energy of the collective mode
overcomes the cavity loss. Thus the collective mode can ex-
ist even in the normal state (see Fig. 1) and the damping
pushes the transition to larger couplings. In addition, we see
that there is a lower limit on w, in Fig. 2. This lower thresh-
old is a purely dynamical effect, not present in the equilib-
rium case. Below it there is a bosonic collective mode at an
energy well below that of the populated states (see Fig. 1).
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FIG. 2. Nonequilibrium phase diagram for a populated micro-
cavity with a single photon mode as a function of coupling strength
g and cavity detuning . with cavity damping y7
=1, 15, 30, 45. Arrow indicates curves of increasing . Dotted
line indicates the location of the equilibrium phase boundary (Ref.
27) with temperature and chemical potential corresponding to that
of the pumped population [T=1/(kgm7), u=-12.5/17].

Although this mode would be occupied in equilibrium it is
far out of resonance with the excitons. As a result, it is not
occupied dynamically and the uncondensed state is meta-
stable. A similar metastable region has been predicted in
quenched atomic gases.'”

Figures 1 and 2 show that, for a given g and v, the con-
densation instability occurs over a range of w.. In a micro-
cavity different values of w.=wy+|k|?/2m correspond to ei-
ther changing the cavity width, which varies the detuning w,
or considering modes at a different wave vector k. As such,
a range of unstable w, implies that for a fixed cavity detuning
there can be instabilities at many wave vectors with different
growth exponents |H(w)|. At short times after the population
has been created the mode with the highest growth exponent
will dominate. Figure 4 shows that as wg is lowered this
dominant mode occurs at k # 0, implying a condensate with
finite momentum, and a spatially inhomogeneous order pa-
rameter. Thus the full phase diagram, allowing for the con-
tinuum of in-plane modes, takes the form shown in Fig. 3.

The phase diagram of Fig. 3 can be understood physically
by noting that the condensation is a result of the exciton-

20
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~
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-20
0 5 10 15 20
gr

FIG. 3. Nonequilibrium phase diagram for a populated micro-
cavity with a continuum of in-plane photon modes as a function of
the coupling constant g and detuning at k=0, w,. The cavity damp-
ing y=1.5/7. In the inhomogeneous region modes with k # 0 have
the highest growth exponent. The vertical boundary is a result of the
gain-loss criterion, H(w) > 0.
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FIG. 4. Growth exponents —H(w) of the unstable modes with
wave vector modulus k in a populated cavity with detuning w,
coupling strength g=13/7, and decay constant y=1.5/7. The wave
vector of the most unstable mode increases as w, is reduced. For
w,.=-30/7 the k=0 mode is stable and there are only finite mo-
mentum instabilities.

photon interactions. If the cavity mode is detuned well below
the excitons then the quasiparticles at k=0 are essentially
photons, uncoupled from the excitons. Thus the condensation
shifts to the higher momentum states, where the photons and
excitons are closer to resonance, and there are strong cou-
pling effects.

V. DISCUSSION

There has been extensive theoretical work on states with
finite momentum Cooper pairing in the context of equilib-
rium superconductors, atomic gases, and quark matter.!®
These FFLO states, which have been sought in a wide range
of systems, may be the ground states where there is an im-
balance in the populations of the two pairing species. How-
ever, they involve increasing the kinetic energy in order to
gain pairing energy and in practice this restricts them to
small regions of parameter space. Here, however, the state
achieved is determined by the Cooper equation and a gain-
loss criterion with the energetics playing a subsidiary role.
Thus, as indicated by Fig. 3, condensation at a finite momen-
tum may be achieved without fine tuning of parameters.

The connection to FFLO may be made more explicit us-
ing a representation for the exciton operator &;=¢;¢; |,
where ¢ is a fermionic annihilation operator. In the simplest
case of a plane wave condensate at wave vector k the mean-
field order parameter is Py, the macroscopic component of
the exciton polarization. This becomes

P=(1IN) X (8516, pe ™
i
= 1IN (816 )2 €/ Pramikr
P.q i

~ (1IN) 2 (ép.18porc))- (11)
P

Thus we see that the condensate can be formally represented
as a coherent state of fermions, pairing with a finite total
momentum. While in this respect the state is similar to
FFLO, there are other differences. For example, in Eq. (11)
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the relative wave function of the pair is independent of mo-
mentum and the pairing is entirely local. In a general FFLO
state there is a momentum-dependent pairing function, de-
scribing Cooper pairs of finite size.

Because the growth exponent depends only on |k| the
condensate emission at short times will cover a circle of
in-plane wave vectors, giving a cone of emitted light. How-
ever at later times the nonlinear terms neglected in Eq. (7)
will break the degeneracy, selecting a spatial form for the
condensate. In equilibrium such interactions favor conden-
sate structures consisting of a pair of antipodal wave vectors
(k,-Kk), or more complex structures such as face-centered
cubes.!” Here the nonlinearity corresponds to the depletion
of the exciton population by the growth of the condensate.
This will reduce the gain'® for collective modes of similar
energies, suggesting that a single plane wave (Fulde-Ferrel)
state may be favored. Although these nonlinearities deter-
mine a particular form for the condensate it is unlikely they
will lead to a homogeneous state so we do not treat them in
detail here.

It is interesting to note that finite-momentum polariton
condensates have been observed*>? though in a different ex-
perimental protocol to that considered here. In these cases
there is continuous pumping and relaxation and a spatial
structure imposed by a pump and trap. The mechanisms lead-
ing to this finite momentum condensate have yet to be estab-
lished and are likely different from those discussed here.
Nonetheless, these experiments demonstrate that microcavi-
ties could support exotic ordered states that have proved elu-
sive in equilibrium.

VI. SUMMARY

We have calculated the linear response of a microcavity
with a nonequilibrium population of excitons. The popula-
tion produces new collective modes, which are analogs of
the Cooper pairing mode in superconductors. We have shown
that these modes are visible as peaks in the optical spectra.
By considering the growth exponents of these collective
modes we have found a phase diagram for the dynamical
condensation. In a microcavity with a continuum of in-plane
wave vectors there can be multiple unstable modes of differ-
ent wave vectors. For some parameters the dominant (and,
for sufficiently negative detuning, only) instabilities can oc-
cur at a nonzero wave vector. In these regimes the microcav-
ity will develop a condensate with spatial structure, signaled
by coherent emission at an angle to the cavity normal.
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APPENDIX: ANALYTICAL PUMP SOLUTION

Reference 15 gives the results of numerical simulations of
Egs. (1)—(3), driven by a linearly chirped Gaussian pump
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pulse. These simulations show that there are parameter re-
gimes in which the dynamics separates into a fast pumping
stage, followed by a slower condensation stage. In this ap-
pendix we present an approximate analytical solution to Eqs.
(1)—(3) which gives the population and (negligible) polariza-
tion at the end of the pump pulse. This solution forms the
starting point for the dynamics discussed in the body of the
paper.

The full numerical solutions in Ref. 15 show that the only
significant polarization during the pumping is at the pump
wave vector p. Moreover, this polarization can be seen to be
small compared with the applied pump field F. Thus during
the pumping we may neglect the second term in Eq. (1) for
all wave vectors. With this approximation, Egs. (1)—(3) re-
duce to an ensemble of independent two-level systems,
driven by a field 'ﬂg which is the externally applied field F
filtered by the cavity response. For pumping at high angles,
outside the stop band of the mirrors, ¢° is proportional to the
pump pulse. Thus Egs. (1)—(3) become the Bloch equations

P, 0 E-A® 0 \[P
P, |=| —E+AQ) 0 Q@ || Py |

DO O - gQ(Z) O DO

(A1)
where we have defined
U= Qe A0, (A2)
P' = pyeilA0dr (A3)
’ 1 .

P = E(Px—le). (A4)

Note that the collective polarizations are at the pump wave
vector while the collective inversion is spatially uniform.
For a model pump pulse of the form

Q t—t
gQ(r) = —gech—2,
T T
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t—1,
Ar) = Zianh—2 4 vy, (A5)
T T

Equation (A1) has an analytical solution.?! The form of the
population D at times #> 7 after the pulse is

, T 5 TN Q(z) -
cosh™— — cos
Dy(E) 2
WE)

cosh{g[(E ) T— a]}cosh{ g[(E— Vo) T+ a]}
-1 (A6)
In the limit ;> @>1 the distribution becomes

Dy(E)
v(E)

=2np(E — = vo)l1 = np(E - pu_—vp)] - 1,
(A7)

where np(E) is a Fermi distribution with temperature
1/(kg7r7) and the chemical potentials p-= v, =+ % If the den-
sity of states v(E) is sufficiently small at energies below u_
then this lower edge is irrelevant. The occupation function
Dy(E) is then equivalent to an equilibrium Fermi distribution
with = p,. In this paper we consider parameters where this
applies, choosing vy=-30/7, ;=18 and @=17.5.

Since the dynamics during the pumping, Eq. (Al), in-
volves only P, the polarization at any other wave vector
Py+p remains zero. For the polarization at the pump wave
vector, the analytical solution gives a window of energies ~7
in which there is a nonzero polarization after pumping. How-
ever, in the absence of an external field and with U= 0, as is
the case after pumping, the subsequent evolution of the po-
larization is free. As a result, the total polarization P,
=f Py(E)dE decays by free induction decay and so may be
neglected after a time of order 7. The numerical work of Ref.
15 showed that for suitable parameters the preparation of this
state, including the free induction decay of the remnant po-
larization, finishes before the dynamics discussed in the main
body of this paper takes place.
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